Parkzone API Documentation

Version: 1.3.4
Last Updated: February 2026
Base URL: https://{tenant}.parkzone.app/api.php

Introduction

The Parkzone API enables external services and applications to
integrate parking management functionality into their systems. This
RESTful API provides comprehensive endpoints for managing parking
reservations, ad-hoc bookings, user administration, and tenant
configuration.

Key Features

» Multi-tenant architecture with subdomain-based tenant
identification

« Secure authentication via hash-based or token-based
mechanisms

» Real-time parking spot availability management

» User and reservation management

* Configuration customization per tenant

» Complete audit trail via history logging

Target Audience

This documentation is designed for developers integrating third-party
applications with the Parkzone platform, including property
management systems, mobile applications, and enterprise resource
planning tools.

Architecture Overview

Multi-Tenant Model

The API operates on a multi-tenant architecture where each tenant is
identified by their subdomain:

https://company-a.parkzone.app/api.php
https://company-b.parkzone.app/api.php

Each tenant maintains isolated data including:

e Configuration settings
User accounts
Parking reservations
Ad-hoc bookings
History logs

Request Format

All APIrequests use POST method with JSON payloads. The action
parameter can be provided either as a query parameter or within the
JSON body.

Example Request:
POST /api.php?action=sync
Content-Type: application/json

Or:
POST /api.php
Content-Type: application/json

{
"action": "sync"

}

Response Format

All responses are returned in JSON format with UTF-8 encoding.

Success Response:

{

https://company-a.parkzone.app/api.php
https://company-b.parkzone.app/api.php

"success'": true,

"data": { ... }

}

Error Response:
{

"success": false,
"error": "Error message description”

}

Authentication

The API supports multiple authentication mechanisms depending on
the endpoint and use case.

Authentication Methods

1. Admin Hash Authentication - Full administrative access using
SHA-256 hash

2. Support Hash Authentication - Support-level access using SHA-
256 hash

3. Support Token Authentication - Time-limited token-based
support access

4. User Code Authentication - User-specific apartment code for
reservations

Admin Authentication

Admin authentication provides full access to all management
endpoints.

Required Parameter:

{

"iISAdmin": true,

"hash": "admin_sha256_hash"
}

Support Authentication

Support authentication provides limited administrative access.

Hash-based (Legacy):

{

"isSupport": true,

"hash": "support_sha256_hash"
}

Token-based (Recommended):

{
"isSupport": true,
"supportToken": "time_limited_token"

}

Security Considerations

« All authentication hashes are stored as SHA-256 values

Hash comparison uses timing-safe hash_equals() function
Support tokens have expiration mechanisms

Failed authentication returns HTTP 403 Forbidden
Authentication credentials should never be transmitted in plain
text

API Endpoints

Sync - Retrieve Complete Tenant State

Retrieves the complete current state of a tenant including
configuration, users, reservations, and ad-hoc bookings.

Endpoint: action=sync
Authentication: None (public read access)

Request:
{

"action": "sync"

}

Response:

{

"config": {

"headingTitle": "Company Parking",
"numPlaces": 10,

"guestTime": 90,

"authMode": false,
"maxResDays": 14,
"resGapMin": 0,

"pronoun”: "du"

}
"adhoc": {

"1

"k": "AB-CD-1234",

"ts": 1708012800

}

},

"users": [

{

"code": "user_password",
"apt": "101",

"comment": "Main entrance"
}

I,

"res": {

"2026-02-15": {

"2" A

"1d": 123,

"n": "John Doe",

"k": "XY-ZZ-5678"

}

}
}
}

Response Fields:

Field | Type | Description

config | Object | Tenant configuration settings

Current ad-hoc bookings (key =

adhoc | Object parking spot number)

List of registered users with
apartment codes

Reservations organized by date
(YYYY-MM-DD)

users | Array

res Object

Table 1: Sync endpoint response structure

Login Admin - Administrative Login
Validates administrative credentials.
Endpoint: action=loginadmin
Authentication: Admin hash required

Request:
{

"action": "loginadmin",
"hash": "admin_sha256_hash"
}

Response:

{

"success": true

}

Login Support (Token-based) - Support Access
Validates time-limited support token for support operations.
Endpoint: action=loginsupporttoken

Authentication: Support token required

Request:
{

"action": "loginsupporttoken”,

n,

"supportToken": "generated_time_limited_token"

}

Response:
{

"success": true

}

Save Configuration - Update Tenant Settings

Updates tenant-specific configuration parameters.
Endpoint: action=saveconfig
Authentication: Admin, Support (hash or token)

Request:

{

"action": "saveconfig",
"iIsAdmin": true,
"hash": "admin_hash",
"config": {
"headingTitle": "New Parking Area",
"numPlaces": 15,
"guestTime": 120,
"authMode": true,
"maxResDays": 30,
"resGapMin": 1,
"pronoun": "sie"

}

}

Configuration Parameters:

Parameter | Type Description
headingTitle | String Display title for parking area
numPlaces Integer | Total number of parking spots

Guest parking duration in

guestTime Integer .

minutes

Require authentication for
authMode Boolean q)

reservations

Maximum reservation
duration in days
Minimum gap between
reservations (days)

UI formality level ("du" or
"sie")

maxResDays | Integer
resGapMin | Integer

pronoun String

Table 2: Configuration parameters

Response:

{

"success'": true

}

Change Password - Update Authentication Credentials

Updates admin or support password hashes.
Endpoint: action=changepw
Authentication: Admin or Support (hash or token)

Request:

{

"action": "changepw",

"ISAdmin": true,

"hash": "current_admin_hash",
"newAdminHash": "new_sha256_hash",
"newSupportHash": "new_sha256_hash"
}

Response:

{

"success": true

}

Save User - Create New User Account

Creates a new user account with apartment association.
Endpoint: action=saveuser
Authentication: Admin or Support (hash or token)

Request:
{

"action": "saveuser",
"IsAdmin": true,
"hash": "admin_hash",
"apt": "102",

"code": "user_password",
"comment": "Second floor, west wing"

}

Response:

{

"success'": true

}

Error Cases:

e Apartment number already exists
e Missing required fields (apt, code)

Delete User - Remove User Account

Deletes a user account by authentication code.
Endpoint: action=deleteuser

Authentication: Admin or Support (hash or token)

Request:
{

"action": "deleteuser",
"iISAdmin": true,

"hash": "admin_hash",

", n

"code": "user_password"

}

Response:

{

"success'": true

}

Save Reservation - Create Parking Reservation

Creates a new parking reservation for a specific time period.
Endpoint: action=savereservation
Authentication: Optional (user code if authMode enabled)

Request:

{

"action": "savereservation",
"platz": 5,

"vonDT": "2026-02-20T08:00",
"bisDT": "2026-02-22T18:00",
"name": "John Doe",
"kennzeichen": "AB-CD-1234",
"authld": "user_password"

}

Parameters:

Parameter | Type Description

Parking spot number (1-

platz Integer indexed)
vonDT String Start date-time (ISO 8601
format)
bisDT String End date-time (ISO 8601
format)
. Name of person making
name String .
reservation

kennzeichen | String | Vehicle license plate number

User code (required if

thid Stri i
au M8 | authMode is true)

Table 3: Reservation parameters

Response:

{

"success": true,
"code": "4567"
}

The returned code is a 4-digit cancellation code for the reservation.

Validation Rules:

e Reservation must be in the future

e Duration cannot exceed maxResDays configuration

e Spot must not be occupied by ad-hoc booking

e No overlapping reservations allowed

e Respects resGapMin buffer period between reservations

Error Cases:

e Invalid date range

e Past date reservation attempt

e Exceeds maximum duration

e Spot already reserved

e Ad-hoc booking conflict

e Invalid authentication code (when authMode enabled)
e Insufficient gap between reservations

Cancel Booking - Delete Reservation

Cancels an existing parking reservation.
Endpoint: action=cancelbooking
Authentication: Admin/Support OR reservation cancellation code

Admin/Support Request:
{

"action": "cancelbooking"”,
"iISAdmin": true,

"hash": "admin_hash",
"id": 123

}

User Request (with code):
{

"action": "cancelbooking",
"id": 123,

"code": "4567"

}

The code parameter accepts either:

e The 4-digit cancellation code returned during reservation
creation

e The apartment authentication code used to create the
reservation

Response:

{

"success'": true

}

Save Ad-Hoc Booking - Create Immediate Parking

Creates an immediate, short-term parking spot occupation (typically
for guests).

Endpoint: action=saveadhoc

Authentication: None (public access)

Request:
{

"action": "saveadhoc",
"platz": 3,

"kennzeichen": "XY-ZZ-9876"
}

Response:

{

"success": true,
"code": "7890"

}

The returned code is a 4-digit code to release the ad-hoc booking.
Validation Rules:

e Spot must not already have an ad-hoc booking

e Spot must not have a reservation for current date

e Ad-hoc bookings expire automatically based on guestTime
configuration

Error Cases:

e Spot already occupied by ad-hoc booking
e Spot has reservation for today

Free Ad-Hoc Booking - Release Parking Spot

Releases an ad-hoc parking spot occupation.
Endpoint: action=freeadhoc
Authentication: Admin/Support OR ad-hoc release code

Admin/Support Request (by spot):
{

"action": "freeadhoc",

"ISAdmin": true,

"hash": "admin_hash",

"platz": 3
}

Admin/Support Request (by code):
{

"action": "freeadhoc",
"IsAdmin": true,
"hash": "admin_hash",
"code": "7890"

}

User Request:

{

"action": "freeadhoc",
"code": "7890"

}

Response:

{

"success'": true

}

Data Models

Configuration Object

Field Type Default Description

headingTitle | String "Parkzone" | Display title
Number of parkin

numPlaces Integer | 10 P 5
spots

guestTime Integer | 90 Gug stduration
(minutes)
Authenticati

authMode Boolean | false ut .entlcatlon
required

headinglcon | String Icon identifier

maxResDays | Integer | 14 Max reservation
days

. Gap between

resGapMin Integer | O P .
reservations

pronoun String "du" UI formality level

Table 4: Configuration object fields

User Object
Field Type | Description
code String | User authentication password
apt String | Apartment or unit identifier
comment | String | Additional user information

Table 5: User object fields

Reservation Object

Field | Type Description

id Integer | Unique reservation identifier
n String | Name of reservation holder
k String | Vehicle license plate

Table 6: Reservation object fields (in sync response)

Ad-Hoc Booking Object

Field | Type Description

k String | Vehicle license plate

Unix timestamp of booking
ts Integer .

creation

Table 7: Ad-hoc booking object fields

Error Handling

Error Response Structure

All API errors return a consistent JSON structure:

{

"success": false,
"error": "Human-readable error message"

}
HTTP Status Codes
Code | Status Description
Request successful (check
200 | OK JSON for success field)
403 | Forbidden Authentication failed

500 Internal Error | Server-side error occurred

Table 8: HTTP status codes

Common Error Messages

"Admin Passwort falsch" - Invalid admin authentication
"Support Passwort falsch” - Invalid support authentication
"Support Token ungiltig/abgelaufen” - Invalid or expired support
token

"Keine Berechtigung" - Insufficient permissions

"Platz ungultig" - Invalid parking spot number

"Zeitraum bereits belegt!" - Time period already occupied

» "Maximal X Tage reservierbar" - Exceeds maximum reservation
duration

* "Buchung in der Vergangenheit nicht moglich" - Cannot book in
the past

* "Code ungiltig" - Invalid cancellation or authentication code

Integration Best Practices

Polling vs. Webhooks

The current API version supports polling via the sync endpoint. For
real-time updates, implement periodic polling with appropriate
intervals:

* Dashboard applications: 30-60 second intervals
* Mobile applications: 60-120 second intervals
* Backend integrations: 5-15 minute intervals

Rate Limiting

While no explicit rate limits are enforced, we recommend:

e Maximum 1 request per second per tenant
e Implement exponential backoff on errors
e Cache sync data locally to minimize requests

Tenant Identification

The API automatically identifies tenants via subdomain. Ensure your
application:

1. Uses the correct tenant subdomain for all requests
2.Does not share authentication credentials across tenants
3. Implements proper tenant isolation in multi-tenant integrations

Security Recommendations

1. HTTPS Only - Always use HTTPS for API communications

2. Credential Storage - Store authentication hashes securely
(encrypted at rest)

3. Token Rotation - Regularly rotate support tokens

4. Input Validation - Validate all user inputs before sending to API

5. Error Handling - Never expose authentication credentials in
error logs
6. Code Security - Treat 4-digit cancellation codes as sensitive data

Data Synchronization Strategy
For applications requiring real-time parking availability:

1. Initial Load: Call sync endpoint on application start

2. Periodic Updates: Poll sync at regular intervals

3. Local Cache: Maintain local state between sync calls

4. Optimistic UI: Update Ul immediately on user actions, confirm
with API response

5. Conflict Resolution: Handle booking conflicts gracefully with
user-friendly messages

Example Use Cases

Use Case 1: Property Management Integration

A property management system integrates Parkzone to provide
residents with parking management:

Implementation Steps:

1. Property manager configures tenant via saveconfig with
building-specific settings

2. Bulk import residents using saveuser endpoint

3. Enable authMode to require apartment codes for reservations

4. Integrate sync data into property dashboard

5. Provide residents with direct booking interface

Use Case 2: Mobile Parking App
A mobile application provides on-the-go parking management:
Features:

e Real-time availability display via periodic sync calls

e Quick ad-hoc booking for visitors with QR code generation
e Advance reservation management

e Push notifications for reservation confirmations

Use Case 3: Enterprise Access Control

Integration with physical access control systems:
Workflow:

1. Sync endpoint polled every 60 seconds

2. Ad-hoc bookings trigger immediate gate access

3. Reservation data synced with barrier control system

4. License plate recognition validates against booking data
5. History logs provide audit trail for security

Migration and Onboarding

New Tenant Setup

When onboarding a new tenant:

1. Create Tenant: Tenant is auto-created on first subdomain access

2. Configure Settings: Use saveconfig to customize tenant
configuration

3. Set Passwords: Use changepw to set secure admin and support
passwords

4. Import Users: Bulk create users via saveuser endpoint

5. Test Integration: Validate sync, booking, and cancellation
workflows

Data Migration

For migrating from existing parking systems:

» Export user data in CSV format

Map user fields to API structure (apt, code, comment)
Programmatically create users via API

Import future reservations as needed

Validate data integrity via sync endpoint

API Changelog

Version 1.0 (Current)

Initial Release Features:

e Multi-tenant support via subdomain isolation

e Complete CRUD operations for reservations and ad-hoc bookings
e User management endpoints

e Configuration customization per tenant

e Hash-based and token-based authentication

e History logging for audit trails

Future Roadmap Considerations:

e Webhook notifications for real-time events
e Extended reporting and analytics endpoints
e Bulk operation endpoints

e GraphQL support

e OpenAPI specification

Support and Contact

For technical support, integration assistance, or API access requests,
please contact:

Heitzer - Professional Consulting Services
Website: https://www.heitzerinfo
Product Website: https://parkzone.app

Technical Support & Sales:
Email: christian@heitzer.info
Phone: +49 6142 4769324

Appendix A: Quick Reference

https://www.heitzer.info/
https://parkzone.app/
mailto:christian@heitzer.info

Endpoint Summary

Action Auth Purpose

Get complete tenant
sync None

state

Validate admi
loginadmin Admin atdga e.a i

credentials

: Validate support
loginsupporttoken | Token
& PP token
: Update

saveconfig Admin/Support configuration
changepw Admin/Support | Change passwords
saveuser Admin/Support | Create user
deleteuser Admin/Support | Delete user
savereservation Optional Create reservation
cancelbooking Admin/Code Cancel reservation

Create ad-h
saveadhoc None reate ag-hoc

booking
freeadhoc Admin/Code Release ad-hoc spot

Table 9: Endpoint quick reference

Date-Time Format

All date-time parameters use ISO 8601 format:

e Format: YYYY-MM-DDTHH:MM or YYYY-MM-DDTHH:MM:SS
e Example: 2026-02-20T08:00
e Timezone: Local time (no timezone designation)

Code Generation

The API generates 4-digit numeric codes for:

e Reservation cancellation codes (returned in savereservation)
e Ad-hoc booking release codes (returned in saveadhoc)
e Range: 1000-9999

Appendix B: Glossary

Tenant - An isolated customer instance with dedicated data and
configuration

Ad-Hoc Booking - Short-term immediate parking occupation
(typically for guests)

Reservation - Scheduled parking spot booking for future date
range

Platz - Parking spot number (German: "place/spot")
Kennzeichen - Vehicle license plate number (German: "license
plate™)

authMode - Authentication mode requiring user codes for
reservations

Hash - SHA-256 password hash for authentication

Support Token - Time-limited token for support access

