
Version: 1.3.4

Last Updated: February 2026

Base URL: https://{tenant}.parkzone.app/api.php

The Parkzone API enables external services and applications to

integrate parking management functionality into their systems. This

RESTful API provides comprehensive endpoints for managing parking

reservations, ad-hoc bookings, user administration, and tenant

configuration.

This documentation is designed for developers integrating third-party

applications with the Parkzone platform, including property

management systems, mobile applications, and enterprise resource

planning tools.

Parkzone API Documentation

Introduction

Key Features

Multi-tenant architecture with subdomain-based tenant

identification

•

Secure authentication via hash-based or token-based

mechanisms

•

Real-time parking spot availability management•

User and reservation management•

Configuration customization per tenant•

Complete audit trail via history logging•

Target Audience



The API operates on a multi-tenant architecture where each tenant is

identified by their subdomain:

https://company-a.parkzone.app/api.php

https://company-b.parkzone.app/api.php

Each tenant maintains isolated data including:

Configuration settings

User accounts

Parking reservations

Ad-hoc bookings

History logs

All API requests use POST method with JSON payloads. The action

parameter can be provided either as a query parameter or within the

JSON body.

Example Request:

POST /api.php?action=sync

Content-Type: application/json

Or:

POST /api.php

Content-Type: application/json

{

"action": "sync"

}

All responses are returned in JSON format with UTF-8 encoding.

Success Response:

{

Architecture Overview

Multi-Tenant Model

Request Format

Response Format

https://company-a.parkzone.app/api.php
https://company-b.parkzone.app/api.php


"success": true,

"data": { ... }

}

Error Response:

{

"success": false,

"error": "Error message description"

}

The API supports multiple authentication mechanisms depending on

the endpoint and use case.

1. Admin Hash Authentication - Full administrative access using

SHA-256 hash

2. Support Hash Authentication - Support-level access using SHA-

256 hash

3. Support Token Authentication - Time-limited token-based

support access

4. User Code Authentication - User-specific apartment code for

reservations

Admin authentication provides full access to all management

endpoints.

Required Parameter:

{

"isAdmin": true,

"hash": "admin_sha256_hash"

}

Authentication

Authentication Methods

Admin Authentication



Support authentication provides limited administrative access.

Hash-based (Legacy):

{

"isSupport": true,

"hash": "support_sha256_hash"

}

Token-based (Recommended):

{

"isSupport": true,

"supportToken": "time_limited_token"

}

Retrieves the complete current state of a tenant including

configuration, users, reservations, and ad-hoc bookings.

Endpoint: action=sync

Authentication: None (public read access)

Request:

{

"action": "sync"

}

Support Authentication

Security Considerations

All authentication hashes are stored as SHA-256 values•

Hash comparison uses timing-safe hash_equals() function•

Support tokens have expiration mechanisms•

Failed authentication returns HTTP 403 Forbidden•

Authentication credentials should never be transmitted in plain

text

•

API Endpoints

Sync - Retrieve Complete Tenant State



Response:

{

"config": {

"headingTitle": "Company Parking",

"numPlaces": 10,

"guestTime": 90,

"authMode": false,

"maxResDays": 14,

"resGapMin": 0,

"pronoun": "du"

},

"adhoc": {

"1": {

"k": "AB-CD-1234",

"ts": 1708012800

}

},

"users": [

{

"code": "user_password",

"apt": "101",

"comment": "Main entrance"

}

],

"res": {

"2026-02-15": {

"2": {

"id": 123,

"n": "John Doe",

"k": "XY-ZZ-5678"

}

}

}

}

Response Fields:



Field Type Description

config Object Tenant configuration settings

adhoc Object
Current ad-hoc bookings (key =

parking spot number)

users Array
List of registered users with

apartment codes

res Object
Reservations organized by date

(YYYY-MM-DD)

Table 1: Sync endpoint response structure

Validates administrative credentials.

Endpoint: action=loginadmin

Authentication: Admin hash required

Request:

{

"action": "loginadmin",

"hash": "admin_sha256_hash"

}

Response:

{

"success": true

}

Validates time-limited support token for support operations.

Endpoint: action=loginsupporttoken

Authentication: Support token required

Request:

{

"action": "loginsupporttoken",

Login Admin - Administrative Login

Login Support (Token-based) - Support Access



"supportToken": "generated_time_limited_token"

}

Response:

{

"success": true

}

Updates tenant-specific configuration parameters.

Endpoint: action=saveconfig

Authentication: Admin, Support (hash or token)

Request:

{

"action": "saveconfig",

"isAdmin": true,

"hash": "admin_hash",

"config": {

"headingTitle": "New Parking Area",

"numPlaces": 15,

"guestTime": 120,

"authMode": true,

"maxResDays": 30,

"resGapMin": 1,

"pronoun": "sie"

}

}

Configuration Parameters:

Save Configuration - Update Tenant Settings



Parameter Type Description

headingTitle String Display title for parking area

numPlaces Integer Total number of parking spots

guestTime Integer
Guest parking duration in

minutes

authMode Boolean
Require authentication for

reservations

maxResDays Integer
Maximum reservation

duration in days

resGapMin Integer
Minimum gap between

reservations (days)

pronoun String
UI formality level ("du" or

"sie")

Table 2: Configuration parameters

Response:

{

"success": true

}

Updates admin or support password hashes.

Endpoint: action=changepw

Authentication: Admin or Support (hash or token)

Request:

{

"action": "changepw",

"isAdmin": true,

"hash": "current_admin_hash",

"newAdminHash": "new_sha256_hash",

"newSupportHash": "new_sha256_hash"

}

Response:

{

Change Password - Update Authentication Credentials



"success": true

}

Creates a new user account with apartment association.

Endpoint: action=saveuser

Authentication: Admin or Support (hash or token)

Request:

{

"action": "saveuser",

"isAdmin": true,

"hash": "admin_hash",

"apt": "102",

"code": "user_password",

"comment": "Second floor, west wing"

}

Response:

{

"success": true

}

Error Cases:

Apartment number already exists

Missing required fields (apt, code)

Deletes a user account by authentication code.

Endpoint: action=deleteuser

Authentication: Admin or Support (hash or token)

Request:

{

"action": "deleteuser",

"isAdmin": true,

Save User - Create New User Account

Delete User - Remove User Account



"hash": "admin_hash",

"code": "user_password"

}

Response:

{

"success": true

}

Creates a new parking reservation for a specific time period.

Endpoint: action=savereservation

Authentication: Optional (user code if authMode enabled)

Request:

{

"action": "savereservation",

"platz": 5,

"vonDT": "2026-02-20T08:00",

"bisDT": "2026-02-22T18:00",

"name": "John Doe",

"kennzeichen": "AB-CD-1234",

"authId": "user_password"

}

Parameters:

Save Reservation - Create Parking Reservation



Parameter Type Description

platz Integer
Parking spot number (1-

indexed)

vonDT String
Start date-time (ISO 8601

format)

bisDT String
End date-time (ISO 8601

format)

name String
Name of person making

reservation

kennzeichen String Vehicle license plate number

authId String
User code (required if

authMode is true)

Table 3: Reservation parameters

Response:

{

"success": true,

"code": "4567"

}

The returned code is a 4-digit cancellation code for the reservation.

Validation Rules:

Reservation must be in the future

Duration cannot exceed maxResDays configuration

Spot must not be occupied by ad-hoc booking

No overlapping reservations allowed

Respects resGapMin buffer period between reservations

Error Cases:

Invalid date range

Past date reservation attempt

Exceeds maximum duration

Spot already reserved

Ad-hoc booking conflict

Invalid authentication code (when authMode enabled)

Insufficient gap between reservations



Cancels an existing parking reservation.

Endpoint: action=cancelbooking

Authentication: Admin/Support OR reservation cancellation code

Admin/Support Request:

{

"action": "cancelbooking",

"isAdmin": true,

"hash": "admin_hash",

"id": 123

}

User Request (with code):

{

"action": "cancelbooking",

"id": 123,

"code": "4567"

}

The code parameter accepts either:

The 4-digit cancellation code returned during reservation

creation

The apartment authentication code used to create the

reservation

Response:

{

"success": true

}

Creates an immediate, short-term parking spot occupation (typically

for guests).

Endpoint: action=saveadhoc

Cancel Booking - Delete Reservation

Save Ad-Hoc Booking - Create Immediate Parking



Authentication: None (public access)

Request:

{

"action": "saveadhoc",

"platz": 3,

"kennzeichen": "XY-ZZ-9876"

}

Response:

{

"success": true,

"code": "7890"

}

The returned code is a 4-digit code to release the ad-hoc booking.

Validation Rules:

Spot must not already have an ad-hoc booking

Spot must not have a reservation for current date

Ad-hoc bookings expire automatically based on guestTime

configuration

Error Cases:

Spot already occupied by ad-hoc booking

Spot has reservation for today

Releases an ad-hoc parking spot occupation.

Endpoint: action=freeadhoc

Authentication: Admin/Support OR ad-hoc release code

Admin/Support Request (by spot):

{

"action": "freeadhoc",

"isAdmin": true,

"hash": "admin_hash",

Free Ad-Hoc Booking - Release Parking Spot



"platz": 3

}

Admin/Support Request (by code):

{

"action": "freeadhoc",

"isAdmin": true,

"hash": "admin_hash",

"code": "7890"

}

User Request:

{

"action": "freeadhoc",

"code": "7890"

}

Response:

{

"success": true

}

Data Models

Configuration Object



Field Type Default Description

headingTitle String "Parkzone" Display title

numPlaces Integer 10
Number of parking

spots

guestTime Integer 90
Guest duration

(minutes)

authMode Boolean false
Authentication

required

headingIcon String "" Icon identifier

maxResDays Integer 14
Max reservation

days

resGapMin Integer 0
Gap between

reservations

pronoun String "du" UI formality level

Table 4: Configuration object fields

Field Type Description

code String User authentication password

apt String Apartment or unit identifier

comment String Additional user information

Table 5: User object fields

Field Type Description

id Integer Unique reservation identifier

n String Name of reservation holder

k String Vehicle license plate

Table 6: Reservation object fields (in sync response)

User Object

Reservation Object



Field Type Description

k String Vehicle license plate

ts Integer
Unix timestamp of booking

creation

Table 7: Ad-hoc booking object fields

All API errors return a consistent JSON structure:

{

"success": false,

"error": "Human-readable error message"

}

Code Status Description

200 OK
Request successful (check

JSON for success field)

403 Forbidden Authentication failed

500 Internal Error Server-side error occurred

Table 8: HTTP status codes

Ad-Hoc Booking Object

Error Handling

Error Response Structure

HTTP Status Codes

Common Error Messages

"Admin Passwort falsch" - Invalid admin authentication•

"Support Passwort falsch" - Invalid support authentication•

"Support Token ungültig/abgelaufen" - Invalid or expired support

token

•

"Keine Berechtigung" - Insufficient permissions•

"Platz ungültig" - Invalid parking spot number•

"Zeitraum bereits belegt!" - Time period already occupied•



The current API version supports polling via the sync endpoint. For

real-time updates, implement periodic polling with appropriate

intervals:

While no explicit rate limits are enforced, we recommend:

Maximum 1 request per second per tenant

Implement exponential backoff on errors

Cache sync data locally to minimize requests

The API automatically identifies tenants via subdomain. Ensure your

application:

1. Uses the correct tenant subdomain for all requests

2. Does not share authentication credentials across tenants

3. Implements proper tenant isolation in multi-tenant integrations

1. HTTPS Only - Always use HTTPS for API communications

2. Credential Storage - Store authentication hashes securely

(encrypted at rest)

3. Token Rotation - Regularly rotate support tokens

4. Input Validation - Validate all user inputs before sending to API

"Maximal X Tage reservierbar" - Exceeds maximum reservation

duration

•

"Buchung in der Vergangenheit nicht möglich" - Cannot book in

the past

•

"Code ungültig" - Invalid cancellation or authentication code•

Integration Best Practices

Polling vs. Webhooks

Dashboard applications: 30-60 second intervals•

Mobile applications: 60-120 second intervals•

Backend integrations: 5-15 minute intervals•

Rate Limiting

Tenant Identification

Security Recommendations



5. Error Handling - Never expose authentication credentials in

error logs

6. Code Security - Treat 4-digit cancellation codes as sensitive data

For applications requiring real-time parking availability:

1. Initial Load: Call sync endpoint on application start

2. Periodic Updates: Poll sync at regular intervals

3. Local Cache: Maintain local state between sync calls

4. Optimistic UI: Update UI immediately on user actions, confirm

with API response

5. Conflict Resolution: Handle booking conflicts gracefully with

user-friendly messages

A property management system integrates Parkzone to provide

residents with parking management:

Implementation Steps:

1. Property manager configures tenant via saveconfig with

building-specific settings

2. Bulk import residents using saveuser endpoint

3. Enable authMode to require apartment codes for reservations

4. Integrate sync data into property dashboard

5. Provide residents with direct booking interface

A mobile application provides on-the-go parking management:

Features:

Real-time availability display via periodic sync calls

Quick ad-hoc booking for visitors with QR code generation

Advance reservation management

Push notifications for reservation confirmations

Data Synchronization Strategy

Example Use Cases

Use Case 1: Property Management Integration

Use Case 2: Mobile Parking App



Integration with physical access control systems:

Workflow:

1. Sync endpoint polled every 60 seconds

2. Ad-hoc bookings trigger immediate gate access

3. Reservation data synced with barrier control system

4. License plate recognition validates against booking data

5. History logs provide audit trail for security

When onboarding a new tenant:

1. Create Tenant: Tenant is auto-created on first subdomain access

2. Configure Settings: Use saveconfig to customize tenant

configuration

3. Set Passwords: Use changepw to set secure admin and support

passwords

4. Import Users: Bulk create users via saveuser endpoint

5. Test Integration: Validate sync, booking, and cancellation

workflows

For migrating from existing parking systems:

Use Case 3: Enterprise Access Control

Migration and Onboarding

New Tenant Setup

Data Migration

Export user data in CSV format•

Map user fields to API structure (apt, code, comment)•

Programmatically create users via API•

Import future reservations as needed•

Validate data integrity via sync endpoint•



Initial Release Features:

Multi-tenant support via subdomain isolation

Complete CRUD operations for reservations and ad-hoc bookings

User management endpoints

Configuration customization per tenant

Hash-based and token-based authentication

History logging for audit trails

Future Roadmap Considerations:

Webhook notifications for real-time events

Extended reporting and analytics endpoints

Bulk operation endpoints

GraphQL support

OpenAPI specification

For technical support, integration assistance, or API access requests,

please contact:

Heitzer - Professional Consulting Services

Website: https://www.heitzer.info

Product Website: https://parkzone.app

Technical Support & Sales:

Email: christian@heitzer.info

Phone: +49 6142 4769324

API Changelog

Version 1.0 (Current)

Support and Contact

Appendix A: Quick Reference

https://www.heitzer.info/
https://parkzone.app/
mailto:christian@heitzer.info


Action Auth Purpose

sync None
Get complete tenant

state

loginadmin Admin
Validate admin

credentials

loginsupporttoken Token
Validate support

token

saveconfig Admin/Support
Update

configuration

changepw Admin/Support Change passwords

saveuser Admin/Support Create user

deleteuser Admin/Support Delete user

savereservation Optional Create reservation

cancelbooking Admin/Code Cancel reservation

saveadhoc None
Create ad-hoc

booking

freeadhoc Admin/Code Release ad-hoc spot

Table 9: Endpoint quick reference

All date-time parameters use ISO 8601 format:

Format: YYYY-MM-DDTHH:MM or YYYY-MM-DDTHH:MM:SS

Example: 2026-02-20T08:00

Timezone: Local time (no timezone designation)

The API generates 4-digit numeric codes for:

Reservation cancellation codes (returned in savereservation)

Ad-hoc booking release codes (returned in saveadhoc)

Range: 1000-9999

Endpoint Summary

Date-Time Format

Code Generation



Appendix B: Glossary

Tenant - An isolated customer instance with dedicated data and

configuration

•

Ad-Hoc Booking - Short-term immediate parking occupation

(typically for guests)

•

Reservation - Scheduled parking spot booking for future date

range

•

Platz - Parking spot number (German: "place/spot")•

Kennzeichen - Vehicle license plate number (German: "license

plate")

•

authMode - Authentication mode requiring user codes for

reservations

•

Hash - SHA-256 password hash for authentication•

Support Token - Time-limited token for support access•


